TB 9-4931-488-35

CHANGE 2

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR SIGNAL GENERATOR, SG1112VIU, SG1112V2U, AND MIS-28707TY2 (HEWLETTPACKARD, MODEL 8640B, OPTIONS 001, $002,003,004$, AND H66)
Headquarters, Department of the Army, Washington, DC 30 December 2004
Distribution Statement A: Approved for public release; distribution is unlimited.
TB 9-4931-488-35, 26 August 2003, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page.

Remove Pages
5 thru 12
19 thru 22
39 and 40

Insert Pages
5 thru 12
19 thru 22
39 and 40
2. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:

Official
PETER J. SCHOOMAKER
General, United States Army
Chief of Staff

Administrative Assistant to the Secretary of the Army

0430602
Distribution:
To be distributed in accordance with IDN 342064, requirements for calibration procedure TB 9-4931-488-35.

TB 9-4931-488-35

CHANGE 1
DEPARTMENT OF THE ARMY TECHNICAL BULLETIN CALIBRATION PROCEDURE FOR SIGNAL GENERATOR, SG1112VIU, SG1112V2U, AND MIS-28707TY2 (HEWLETTPACKARD, MODEL 8640B, OPTIONS 001, $002,003,004$, AND H66)
Headquarters, Department of the Army, Washington, DC
4 February 2004
Distribution Statement A: Approved for public release; distribution is unlimited. TB 9-4931-488-35, 26 August 2003, is changed as follows:

1. Remove old pages and insert new pages as indicated below. New or changed material is indicated by a vertical bar in the margin of the page.

Remove Pages
9 and 10
11 and 12
15 and 16

Insert Pages

9 and 10
11 and 12
15 and 16
2. File this change sheet in front of the publication for reference purposes.

By Order of the Secretary of the Army:
Official:
PETER J. SCHOOMAKER
General, United States Army
Chief of Staff

JOEL B. HUDSON
Administrative Assistant to the Secretary of the Army

0332208
Distribution:
To be distributed in accordance with IDN 342064, requirements for TB 9-4931-488-35.
*TB 9-4931-488-35

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR SIGNAL GENERATOR, SG1112VIU, SG1112V2U, AND MIS-28707TY2 (HEWLETTPACKARD, MODEL 8640B, OPTIONS 001, $002,003,004$, AND H66)
Headquarters, Department of the Army, Washington, DC 26 August 2003
Approved for public release; distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms)directly to: Commander, U.S. Army Aviation and Missile Command, ATTN: AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via email, fax, or the World Wide Web. Our fax number is DSN 788-6546 or Commercial 256-8426546. Our e-mail address is: 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found at the back of this manual. For the World Wide Web, use https://amcom2028.redstone.army.mil.

[^0]$\left.\begin{array}{llr} & \text { Paragraph } & \text { Page } \\ \begin{array}{l}\text { Harmonic distortion ... } \\ \text { Output level and meter accuracy (all models }\end{array} & 10 \\ \text { except those containing option 004)............. }\end{array}\right)$

SECTION I
 IDENTIFICATION AND DESCRIPTION

1. Test Instrument Identification. This bulletin provides instructions for the calibration of Signal Generator, SG1112V1U (8460BOPT004), SG1112V2U (8640BOPT001), MIS-28707TY2 (8640BH66) and Hewlett-Packard, Model 8640B, Options 001, 002, 003, 004, and H66. The manufacturers' manuals were used as the prime data sources in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
a. Model Variations. Option variations are as listed below in (1) through (5).
(1) Option 001 provides a modulation oscillator that is continuously adjustable from 20 Hz to 600 kHz . The oscillator can also be set for 400 Hz or 1 kHz fixed tones.
(2) Option 002 provides an internal, active frequency doubler that extends the frequency range of the generator to 1024 MHz (to 1100 MHz with over range).
(3) Option 003 protects the generator output circuits from accidental applications of reverse power up to 50 W .
(4) Option 004 provides a demodulated output and modified AM circuitry for setting very accurate $A M$ depths. It also has a 1 dB output step attenuator in addition to the standard 10 dB output step attenuator.
(5) Option H66 which includes option 001 provides an additional control for very fine adjustment of the output level and improved harmonic content in the RF output signal.
b. Time and Technique. The time required for this calibration is approximately 8 hours, using the dc and low frequency and microwave technique.

2. Forms, Records, and Reports

a. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
b. Adjustments to be reported are designated (R) at the end of the sentence in which they appear. When adjustments are in tables, the (R) follows the designated adjustment. Report only those adjustments made and designated with (R).
3. Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Table 1. Calibration Description

Test instrument parameters		Performance specifications ${ }^{1}$	
Internal reference		Range: 5 MHz Accuracy: +1 ppm Drift: $\quad<0.05 \mathrm{ppm}$ per hr	
Frequency		Range: 0.5 to 512 MHz 0.5 to 1024 MHz (option 002) Accuracy:Counter resolution (± 1 count) + reference error $\pm 2 \mathrm{ppm}$ (locked mode) Stability: $<10 \mathrm{ppm} / 10$ minute (unlocked mode) $<0.1 \mathrm{ppm}$ for $+5 \%$ to -10% line voltage change (locked mode	
Harmonics (at $1 \mathrm{~V},+10 \mathrm{~dB}$ output range and below)		$\begin{aligned} & \geq 30 \mathrm{~dB} \text { below fundamental, } 0.5 \text { to } 512 \mathrm{MHz} \text {) } \\ & \geq 12 \mathrm{~dB} \text { below fundamental, } 512 \text { to } 1024 \mathrm{MHz} \\ & \text { (option 002) } \end{aligned}$	
Subharmonics (option 002)		$\geq 20 \mathrm{~dB}$ below fundamental, 512 to 1024 MHz	
Output Level (Top 10 dB Of Vernier Range)			
Options	$\begin{gathered} \text { Frequency Range } \\ (\mathrm{MHz}) \end{gathered}$	Output Level (dBm)	Accuracy (dB)
Basic, 001, and H66	0.5 to 512	$\begin{array}{rll} \hline+19 & \text { to } & -7 \\ -7 & \text { to } & -47 \\ -47 & \text { to } & -137^{3} \\ \hline \end{array}$	$\begin{aligned} & \hline \pm 1.5 \\ & \pm 2.0 \\ & \pm 2.5 \\ & \hline \end{aligned}$
002	0.5 to 64	$\begin{array}{ccc} \hline+18.5 & \text { to } & -7 \\ -7 & \text { to } & -47 \\ -47 & \text { to } & -137^{3} \\ \hline \end{array}$	$\begin{aligned} & \pm 1.5 \\ & \pm 2.0 \\ & \pm 2.5 \\ & \hline \end{aligned}$
	64 to 512	$\begin{array}{ccc} \hline+18.5 & \text { to } & -7 \\ -7 & \text { to } & -47 \\ -47 & \text { to } & -137^{3} \\ \hline \end{array}$	$\begin{aligned} & \pm 2.0 \\ & \pm 2.5 \\ & \pm 3.0 \\ & \hline \end{aligned}$
	512 to 1024	$\begin{array}{rlc} \hline+13 & \text { to } & -7 \\ -7 & \text { to } & -47 \\ -47 & \text { to } & -127^{3} \\ \hline \end{array}$	$\begin{aligned} & \pm 3.0 \\ & \pm 3.5 \\ & \pm 4.0 \\ & \hline \end{aligned}$
003	0.5 to 512	+18.5 to -7 $-7 \quad$ to $\quad-47$ -47 to -137^{3}	$\begin{array}{r} \hline+1.75 \\ -2.25 \\ \\ +2.25 \\ -2.75 \\ \\ +2.75 \\ -3.25 \end{array}$

See footnotes at end of table

TB 9-4931-488-35
Table 1. Calibration Description - Continued

Test instrument parameters	Performance specifications ${ }^{1}$				
Output Level (Top 10 dB Of Vernier Range) ${ }^{2}$ - Continued					
Options	Frequency Ran (MHz)		Outp	ut Level (dBm)	Accuracy (dB)
002/003	0.5 to 512 to	512 1024	$+18$ -7 -47 $\begin{aligned} & +12 \\ & -7 \\ & -47 \end{aligned}$	$\begin{aligned} & \text { to } \quad-7 \\ & \text { to }-47 \\ & \text { to }-137^{3} \\ & \text { to }-7 \\ & \text { to }-47 \\ & \text { to }-128^{3} \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+2.0 \\ -3.0 \\ +2.5 \\ -3.5 \\ +3.0 \\ -4.0 \\ \\ \pm 3.5 \\ \pm 4.0 \\ \pm 4.5 \\ \hline \end{array}$
004	0.5 to	512	$\begin{array}{r} +15 \\ -10 \\ -50 \\ \hline \end{array}$	$\begin{array}{ll} \hline \text { to } & -10 \\ \text { to } & -50 \\ \text { to } & -142^{3} \\ \hline \end{array}$	$\begin{aligned} & \hline \pm 1.5 \\ & \pm 2.0 \\ & \pm 2.5 \\ & \hline \end{aligned}$

Output Level Flatness (1 V Range And Top 10 dB Of Vernier Range) ${ }^{2}$

Options	Frequency Range (MHz)	Flatness Accuracy (dBm)	Reference Frequency (MHz)
Basic, 001, and H66	0.5 to 512	± 0.5	50
002	0.5 to 64 64 to 512 512 to 1024	$\begin{aligned} & \pm 0.75 \\ & \pm 1.0 \\ & \pm 1.5 \end{aligned}$	50
003	0.5 to 512	$\begin{array}{r} +0.75 \\ -1.25 \end{array}$	50
002/003	0.5 to 512 512 to 1024	$\begin{array}{r} \hline+1.0 \\ -2.0 \\ \pm 2.0 \\ \hline \end{array}$	50
004	$\begin{array}{lll} \hline 0.5 & \text { to } & 512 \\ 108 & \text { to } & 336 \end{array}$	$\begin{aligned} & \pm 0.75 \\ & \pm 0.5 \end{aligned}$	$\begin{aligned} & 190 \\ & 190 \end{aligned}$

See footnotes at the end of table

Table 1. Calibration Description - Continued

Test instrument parameters	Performance specifications
Internal modulation oscillator	Range: 400 Hz and 1 kHz (fixed) 20 Hz to 600 kHz (variable option $001 \& \mathrm{H} 66$) Accuracy: $\pm 3 \%$ (fixed); $\pm 15 \%$ (variable) Distortion: $\quad<0.5 \%, 400 \mathrm{~Hz}$ and 1 kHz $<0.5 \%, 20 \mathrm{~Hz}$ to 2 kHz $<1.0 \%, 2$ to 200 kHz $<2.0 \%, 200$ to 600 kHz
Amplitude modulation (400 Hz and 1 kHz rate)	Range: 0 to 100% depth Accuracy: $\quad \pm(5.5 \%$ reading and 1.5% FS) 0.5 to 512 MHz Distortion: $\quad<1 \%$ (0 to 50% depth) 0.5 to 512 MHz $<3 \%$ (50 to 90% depth) 0.5 to 512 MHz $<10 \%$ (0 to 30% depth) 512 to $1024 \mathrm{MHz} \quad$ (option 002) $<20 \%$ (30 to 90% depth) 512 to 1024 MHz (option 002) External sensitivity: $\quad 0.5$ to $512 \mathrm{MHz}:(0.100 \pm 0.005) \mathrm{AM}$ per mV peak into 600Ω with AM vernier fully cw Frequency response (option 004): <0.04 dB 90 to 150 Hz rate ${ }^{4}$ (108 to 118 and 329 to 335 MHz) $<0.1 \mathrm{~dB} 9$ to 11 kHz rate (108 to 118 MHz)
Demodulated output (option 004)	Range: 20 to 80% AM (108 to 118 and 329 to 336 MHz) Ac output: $\% \mathrm{AM}=(20 \pm 0.4 \%)$ per V rms Dc output:1.414 $\pm 0.010 \mathrm{~V}$ dc for $100 \% \mathrm{AM}$
Frequency modulation (400 Hz and 1 kHz rate)	Range: 0 to 2560 kHz deviation (5120 kHz option $002)^{5}$ Accuracy: $\quad \pm(7 \%$ reading $+1.5 \%$ FS) 0 to 2560 kHz (except for maximum peak deviation position which is \pm (10% reading $\pm 1.5 \%$ FS) Distortion: $\quad<1 \%$ for deviations up to $1 / 8$ maximum allowable $<3 \%$ for deviations up to maximum allowable External sensitivity: 1 V into 600Ω yields maximum deviation indicated on peak deviation switch with FM vernier fully cw Accuracy: $\pm 6 \%$ (0 to 2560 kHz) ${ }^{5}$

${ }^{1}$ Specifications apply to all options unless otherwise specified.
${ }^{2}$ When below top 10 dB of vernier range, add $\pm 0.5 \mathrm{~dB}$.
${ }^{3}$ Calibrated to 90 dB .
${ }^{4}$ Calibrated to $<0.1 \mathrm{~dB}$
${ }^{5}$ Calibrated to 320 kHz deviation.

SECTION II EQUIPMENT REQUIREMENTS

4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287 or AN/GSM-705. Alternate items may be used by the calibrating activity when the equipment listed in table 2 is not available. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI. Where the four-to-one ratio cannot be met, the actual accuracy of the equipment selected is shown in parenthesis.

TB 9-4931-488-35

5. Accessories Required. The accessories required for this calibration are common usage accessories, issued as indicated in paragraph 4 above and are not listed in this calibration procedure.

Table 2. Minimum Specifications of Equipment Required

Common name	Minimum use specifications	Manufacturer and model (part number)
AUDIO ANALYZER Distortion: Frequency:	Range: 0 to 20% distortion Accuracy: $\pm 3 \%$ FS Range: 90 to 1000 Hz Accuracy: $\quad<1 \%$ distortion	Boonton, Model 1121 (1121)
AUTOTRANSFORMER	Range: 105 to 123 V dc Accuracy: $\pm 1 \%$	Ridge, Model 9020A (9020A)
FREQUENCY COUNTER	Range: 20 Hz to 1100 MHz Accuracy: $\quad \pm 1.25 \times 10^{-8}$	Fluke, Model PM6681/656
MEASURING RECEIVER		Hewlett-Packard, Model 8902A w/sensor, Model 11722A (11722A) and microwave converter, model 11793A (11793A)
MULTIMETER	Range: 0.196 to 4.08 V (ac) 0.000 to 44.70 V (dc) Accuracy: $\quad \pm 0.5 \%$ (ac) $\pm 0.025 \%$ (dc)	Fluke, Model 8840A/AF05 (AN/GSM-64D)
OSCILLOSCOPE	Bandwidth: 50 MHz Sensitivity: $5 \mathrm{mV} /$ div Accuracy: $\pm 3 \%$	(OS-303/G)
PULSE GENERATOR	Range: 1 kHz rate 0.5 ms width	LeCroy Model 9210 (9210) with plug-in, LeCroy Model 9211 (9211)

6 CHANGE 2

TB 9-4931-488-35
Table 2. Minimum Specifications of Equipment Required - Continued

Common name	Minimum use specifications	Manufacturer and model (part number)
SPECTRUM ANALYZER	Range: 0.5 to 1024 MHz Accuracy: $+0.25 \mathrm{~dB} / \mathrm{dB}$ but not more than +1.5 dB over	
	70 dB range	

SECTION III

CALIBRATION PROCESS

6. Preliminary Instructions

a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire procedure before beginning the calibration.
b. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.
c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in the manufacturers' manuals for this TI.
d. When indications specified in paragraphs 8 through 18 are not within tolerance, perform the power supply check prior to making adjustments. After adjustments are made, repeat paragraphs 8 through 18. Do not perform power supply check if all other parameters are within tolerance.
e. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(S) to minimum after each step within the performance check where applicable.

NOTE

Remove TI covers only as required to perform adjustments or set internal switches.

TB 9-4931-488-35
a. Adjust meter mechanical zero adjustment (located above MODULATION FREQUENCY switch) until needle is over 0 line on TI meter.
b. Connect TI to autotransformer.
c. Connect autotransformer to a $115-\mathrm{V}$ ac source and adjust autotransformer for a 117 V output.
d. Press LINE OFF ON pushbutton to $\mathbf{O N}$ and allow 2 hours for temperature stabilization.
e. Position controls as listed in (1) through (17) below:
(1) COUNTER MODE pushbuttons as listed in (a) through (d) below:
(a) EXPAND X10 and X100 released.
(b) LOCK released.
(c) INT EXT pressed.
(d) $\mathbf{+ 1 / 2}$ DIGIT released.
(2) $\mathbf{F M} \mathbf{k} / \mathbf{M H z}$ pushbutton pressed.
(3) AM switch to OFF.
(4) AUDIO OUTPUT LEVEL control fully ccw.
(5) AM control fully ccw.
(6) MODULATION FREQUENCY RANGE switch to FREQ FIXED $\mathbf{1} \mathbf{~ k H z}(\mathbf{1 0 0 0}$ Hz for opt 004).
(7) FM switch to OFF.
(8) PEAK DEVIATION switch to $\mathbf{5} \mathbf{~ k H z}$.
(9) FM control fully ccw.
(10) RANGE MHz switch to 1-0.5.
(11) FINE TUNE control centered.
(12) OUTPUT LEVEL switches to -20 dBm.
(13) OUTPUT LEVEL vernier controls centered.
(14) TIME BASE vernier control to CAL.
(15) RF OFF/ON switch to OFF.
(16) TIME BASE (rear panel) switch to INT.
(17) FREQUENCY TUNE control fully cw.

8. Internal Reference Accuracy

a. Performance Check. Connect TIME BASE REF (rear panel) to frequency counter. Adjust internal reference oscillator (located through hole on right-hand side of front panel window) for a frequency counter indication of 5.000000 MHz .

NOTE

Check reference oscillator frequency again after 2 hours. The reference will be between 4.9999995 and 5.0000005 .
b. Adjustments. No further adjustments can be made.

9. Frequency Range, Accuracy, and Stability

a. Performance Check
(1) Connect frequency counter channel A to TI auxiliary output (rear panel).
(2) Frequency counter will indicate 1.070 MHz or greater.
(3) Turn FREQUENCY TUNE control fully ccw. Frequency counter will indicate 0.450 MHz or less.
(4) Set RANGE MHz switch to 64-32 and adjust FREQUENCY TUNE control for a frequency MHz display of 50 MHz .
(5) Press COUNTER MODE EXPAND X100 pushbutton.
(6) Adjust frequency counter time base for 8 digits resolution. Difference between TI display and frequency counter indications will be less than 110 Hz .
(7) Press COUNTER MODE EXPAND X100 released, X10 and COUNTER MODE LOCK pushbuttons pressed.
(8) Allow 1 minute to acquire phase lock. Difference between frequency counter and TI display indications will be less than 100 Hz .
(9) Release COUNTER MODE EXPAND X10 and LOCK pushbuttons.
(10) Observe frequency counter indication for 10 minutes. Frequency change will be less than 500 Hz .
(11) Press COUNTER MODE LOCK ON pushbutton. Vary autotransformer from 123 to 105 V. Frequency counter indication will not vary more than 50 Hz .
(12) Adjust autotransformer for a 117 V output. Release COUNTER MODE LOCK ON pushbutton.
(13) Release COUNTER MODE LOCK ON pushbutton and disconnect equipment setup.
b. Adjustments. No adjustments can be made.

TB 9-4931-488-35

10. Harmonic Distortion

a. Performance Check
(1) Connect TI RF OUTPUT to spectrum analyzer INPUT 50Ω.
(2) Position controls as listed in (a) through (e) below.
(a) LEVEL VOLTS pushbutton pressed.
(b) RANGE MHz switch to $\mathbf{1 - 0 . 5} \mathbf{~ M H z}$.
(e) OUTPUT LEVEL switch to $\mathbf{+ 1 0} \mathbf{~ d B m}$.
(d) RF OFF/ON switch to ON.
(e) COUNTER MODE EXPAND X10 pushbutton pressed.
(3) Adjust FREQUENCY TUNE control for a frequency MHz display indication of 0.5 MHz and OUTPUT LEVEL vernier control(s) fully cw.
(4) Position spectrum analyzer controls as necessary to obtain conditions listed in (a) through (b) below.
(a) Attenuation 40 dB .
(b) Reference level to 15 dB .
(5) Set spectrum analyzer Start Freq and Stop Freq to values listed in table 3 .
(6) Press the spectrum analyzer key sequence in (a) through (d) below:
(a) Marker.
(b) Peak Search.
(c) Marker Delta.
(d) Peak Search, Next Peak.
(7) Spectrum analyzer will be within Mkr1 indication listed in table 3.
(8) Press spectrum analyzer Next Peak for each harmonic peak displayed, spectrum analyzer will be within Mkr1 indication listed in table 3. Repeat technique of (2) through (8) for remaining frequencies in table 3.

Table 3. Harmonic Distortion Accuracy

Test instrument		Spectrum analyzer		
Range MHz switch setting	Frequency MHz display (MHz)	Start Freq (Hz)	Stop Freq (Hz)	Max Mkr1 indication Harmonics $\geq \mathrm{dB}$ below fundamental
1-0.5	. 5	400 K	2.6 M	-30
2-1	1	900 K	5.1 M	-30
4-2	2	1.9 M	11 M	-30
8-4	4	3.9 M	21 M	-30
16-8	8	7.9 M	41 M	-30
32-16	16	15 M	81 M	-30
64-32	32	31 M	161 M	-30
128-64	64	63 M	321 M	-30
256-128	128	127 M	640 M	-30
512-256	256	250 M	1.3 G	-30
512-256	512	500 M	2.6 G	-30

NOTE
For TI's containing option 002, perform (9) through (13) below.
For all others set RF OFF/ON switch to OFF and proceed to paragraph 11 below.
(9) Press spectrum analyzer Marker, [Off].
(10) Position controls as listed in (a) through (d) below.
(a) RANGE MHz switch to $\mathbf{1 0 2 4 - 5 1 2} \mathbf{~ M H z}$.
(b) OUTPUT LEVEL switch to $\mathbf{+ 1 0} \mathbf{~ d B m}$.
(c) RF OFF/ON switch to ON.
(d) COUNTER MODE EXPAND X10 pushbutton released.
(11) Adjust FREQUENCY TUNE control for a frequency MHz display indication of 1024 MHz and OUTPUT LEVEL vernier control(s) fully cw.
(12) Set spectrum analyzer to TI frequency, set power reference Marker, Peak Search, Marker, [Delta], then tune to harmonic frequency listed in table 4. Harmonic frequency Mkr1 indication will be within limits listed in table 4 .
(13) Repeat technique of (9) through (12) above as necessary for remaining rows in table 4 Mkr1 indication will be within limits listed in table 4

Table 4. Harmonic Distortion Accuracy (TI Containing Option 002 Only)

Test instrument		Spectrum analyzer	
DATA Amplitude (dBm)	DATA Frequency (MHz)	Harmonic frequency (MHz)	Tolerance
+10	1024	2048	Limit Harmonics $\geq \mathrm{dB}$ below fundamental
+10	1024	3072	-12
+10	1024	4096	-12
+10	1024	5120	-12
+10	1024	2048	-12
-40^{1}	512	256	-12
-40	512	768	-20

${ }^{1}$ Set OUTPUT LEVEL vernier for a meter reading of +3 dB , and set spectrum analyzer attenuation to 0 dB .
(14) Set RF OFF/ON switch to OFF.
b. Adjustments. No adjustments can be made.

11. Output Level and Meter Accuracy (All Models Except Those Containing Option 004)

a. Performance Check

(1) Connect sensor module 11722A to measuring receiver CALIBRATION RF POWER OUTPUT. Set measuring receiver to measure RF power, press RF Power CAL and then save correction factors.
(2) Disconnect measuring receiver from CALIBRATION RF POWER OUTPUT and connect to RF OUTPUT.

NOTE
The maximum output of TI's with option 002 is +13 dBm and with options $002 / 003$ is +12 dBm .
(3) Set OUTPUT LEVEL switch to +20 dBm and RANGE MHz switch to 512-256.
(4) Adjust FREQUENCY TUNE control for a 512 MHz indication on

FREQUENCY MHz display and press COUNTER MODE LOCK ON pushbutton.
(5) Set RF OFF/ON switch to ON.
(6) Select the table (5 through 8) that corresponds to the appropriate option(s) of the TI. Using the techniques of (3) and (4) above set OUTPUT LEVEL, RANGE MHz, and FREQUENCY TUNE switches to settings listed in table selected and adjust OUTPUT LEVEL vernier control(s) for meter indications as listed in table. If measuring receiver indications are not as specified, perform \mathbf{b} below.

TB 9-4931-488-35
Table 5. Output Meter Accuracy (Standard, Options 001 and H66)

Test instrument		Measuring receiver indications (dBm)	
OUTPUT LEVEL switch settings (dBm)	Meter indications (dB)	-1	
+20	-7	+17.5	Max
+20	-10	+11.5	+20.5
+20	+3	+8.5	+14.5
+10	0	+11.5	+11.5
+10	+3	+8.5	+14.5
0	0	+1.5	+11.5
0		-1.5	+4.5

Table 6. Output Meter Accuracy (Option 002)

Test instrument OUTPUT LEVEL switch settings (dBm)	Meter indications (dB)	Measuring receiver indications (dBm)					
		25 MHz		512 MHz		1000 MHz	
		Min	Max	Min	Max	Min	Max
+20	-2	+16.5	+19.5	+16.0	+20.0	---	---
+20	-7	+11.5	+14.5	+11.0	+15.0	---	---
+20	-10	+8.5	+11.5	+8.0	+12.0	+7.0	+13.0
+10	+3	+11.5	+14.5	+11.0	+15.0	+10.0	+16.0
+10	0	+8.5	+11.5	+8.0	+12.0	+7.0	+13.0
0	+3	+1.5	+4.5	+1.0	+5.0	0.0	+6.0
0	0	-1.5	+1.5	-2.0	+2.0	-3.0	+3.0

Table 7. Output Meter Accuracy (Option 002 with 003)

Test instrument OUTPUT LEVEL switch settings (dBm)	Meter indications (dB)	Measuring receiver indications (dBm)			
		25 And 512 MHz		1000 MHz	
		Min	Max	Min	Max
+20	-2	+15.0	+20.0	---	---
+20	-7	+10.0	+15.0	---	---
+20	-10	+6.5	+12.5	---	---
+10	+2	+9.0	+14.0	+8.5	+15.5
+10	0	+7.0	+12.0	+6.5	+13.5
0	+3	0.0	+5.0	-0.5	+6.5
0	0	-3.0	+2.0	-3.5	+3.5

Table 8. Output Meter Accuracy (Option 003)

Test Instrument		Measuring receiver Indications (dBm)	
OUTPUT LEVEL switch settings (dBm)	Meter indications (dB)	-2	
+20	-7	+15.75	Max
+20	-10	+10.75	+19.75
+20	+3	+7.75	+14.75
+10	0	+10.75	+11.75
+10	+3	+7.75	+14.75
+0	0	+0.75	+11.75
+0	-2.25	+4.75	

(7) Adjust OUTPUT LEVEL vernier control(s) for a $0.0-\mathrm{dBm}$ measuring receiver indication.
(8) Set measuring receiver to measure tuned level and press the RF Power CAL button.
(9) Select the table (9 through 12) that corresponds to the appropriate option(s) of the TI. Using the techniques of (3) and (4) above set OUTPUT LEVEL, RANGE MHz, and FREQUENCY TUNE switches to settings listed in table selected and adjust OUTPUT switch to settings listed in table selected. The measuring receiver will indicate as specified.

NOTE

While performing the test in tables 9 through 11, press the measuring receiver RF Power CAL button each time the measuring receiver RCAL light illuminates.

Table 9. Output Level Accuracy (Basic, Option 001 and H66)

Test instrument OUTPUT LEVEL switch settings (dBm)	Measuring receiver indications (dBm)	
	Min	Max
-10	-12	-8
-20	-22	-18
-30	-32	-28
-40	-42	-38
-50	-52.5	-47.5
-60	-62.5	-57.5
-70	-72.5	-67.5
-80	-82.5	-77.5
-90	-92.5	-87.5
-100	-102.5	-97.5
-110	-112.5	-107.5

TB 9-4931-488-35
Table 10. Output Level Accuracy (Option 002)

Test instrument OUTPUT LEVEL switch settings (dBm)	Measuring receiver indications (dB)					
	25 MHz		512 MHz		1000 MHz	
	Min	Max	Min	Max	Min	Max
-10	-12.0	-8.0	-12.5	-7.5	-13.5	-6.5
-20	-22.0	-18.0	-22.5	-17.5	-23.5	-16.5
-30	-32.0	-28.0	-32.5	-27.5	-33.5	-26.5
-40	-42.0	-38.0	-42.5	-37.5	-43.5	-36.5
-50	-52.5	-47.5	-53.0	-47.0	-54.0	-46.0
-60	-62.5	-57.5	-63.0	-57.0	-64.0	-56.0
-70	-72.5	-67.5	-73.0	-67.0	-74.0	-66.0
-80	-82.5	-77.5	-83.0	-77.0	-84.0	-76.0
-90	-92.5	-87.5	-93.0	-87.0	-94.0	-86.0
-100	-102.5	-97.5	-103.0	-97.0	-104.0	-96.0
-110	-112.5	107.5	-113.0	-107.0	-114.0	-106.0

Table 11. Output Level Accuracy (Option 002 with 003)

Test instrument OUTPUT LEVEL switch settings (dBm)	Measuring receiver indications (dB)			
	25 and 512 MHz	1000 MHz		
-10	Min	Max	Min	Max
-20	-13.5	-7.5	-14.0	-6.0
-30	-23.5	-16.5	-24.0	-16.0
-40	-33.5	-27.5	-34.0	-26.0
-50	-43.5	-37.5	-44.0	-36.0
-60	-54.0	-47.0	-54.5	-45.5
-70	-64.0	-57.0	-64.5	-55.5
-80	-74.0	-67.0	-74.5	-65.5
-90	-84.0	-77.0	-84.5	-75.5
-100	-94.0	-87.0	-94.5	-85.5
-110	-104.0	-97.0	-104.5	-95.5
	-114.0	-107.0	-114.5	-105.5

Table 12. Output Level Accuracy (Option 003)

Test instrument OUTPUT LEVEL switch settings (dBm)	Measuring receiver indications (dB)	
		Max
-10	-12.75	-7.75
-20	-22.75	-17.75
-30	-32.75	-27.75
-40	-42.75	-37.75
-50	-53.25	-47.25
-60	-63.25	-57.25
-70	-73.25	-67.25
-80	-83.25	-77.25
-90	-93.25	-87.25
-100	-103.25	-97.25
-110	-113.25	-107.25

(10)Release COUNTER MODE LOCK ON pushbutton.
b. Adjustments
(1) Position controls as listed in (a) through (d) below:
(a) $\mathbf{A M} \mathbf{X 1 0 \%}$ pushbutton pressed.
(b) AM switch to OFF.
(c) MODULATION FREQUENCY RANGE switch to FIXED FREQ $1 \mathbf{k H z}$.
(d) AM control fully ccw.
(2) Connect multimeter INPUT HI to DC OUTPUT A2TP3 fig. 1) and INPUT LO to GND A2TP1 (fig. 1). Adjust DET OFFSET A2R15 (fig. 1) for multimeter indication of $0.000 \pm 1 \mathrm{mV}$ dc (R).
(3) Disconnect multimeter INPUT HI from DC OUTPUT A2TP3 and connect INPUT HI to METER ADJ A2TP4 (fig. 1).
(4) Adjust METER OFFSET A2R14(fig.) for multimeter indication of $0.000 \pm 1 \mathrm{mV}$ dc (R).
(5) Disconnect multimeter INPUT HI from METER ADJ A2TP4 fig. 1) and connect INPUT HI to AM IN A26A2TP1 (fig. 2).

Figure 1. TEST instrument, top left hand side.

Figure 2. Test instrument - top back side.
(6) Set AM switch to INT and adjust AM control for a multimeter indication of 0.707 V ac. Adjust METER DRIVE A2R2 9 (fig. 1) for TI meter indication of 10 on 0 to 10 scale (R).
(7) Adjust AM control for TI meter indications listed in able 13. Multimeter will indicate as specified; if not, readjust METER DRIVE A2R29 (fig. 1) for best in-tolerance condition.

Table 13. Meter Accuracy

| Test instrument meter
 indications
 $(0-10$ Scale $)$ | MinMultimeter indications
 (V Rms) |
| :---: | :---: | :---: |
| | 0.718 |

(8) Disconnect multimeter from TI. Connect RF OUTPUT to measuring receiver sensor module.
(9) Position controls as listed in (a) through (i) below.
(a) LEVEL VOLTS pushbutton pressed.
(b) AM control fully ccw.
(c) FM switch to OFF.
(d) COUNTER MODE LOCK ON released.
(e) RANGE MHz switch 64-32.
(f) FREQUENCY TUNE control for a FREQUENCY MHz display indication of 50 MHz .
(g) OUTPUT LEVEL switch to $\mathbf{+ 1 0} \mathbf{~ d B m}$.
(h) OUTPUT LEVEL vernier control(s) fully cw.
(i) RF OFF/ON switch to ON.
(10) Set measuring receiver to measure AM with AVG DETECTOR.
(11) Adjust AM control for a measuring receiver indication of approximately 20%. Press measuring receiver RATIO \% key.
(12) Adjust OUTPUT LEVEL vernier control(s) for a TI meter indication of $\mathbf{- 7 d B}$.
(13) Adjust DET A26A1R19 (A26A1R34 for option 002) fig. 3) for measuring receiver indication of 100% (R).

Figure 3. TEST instrument - bottom view.
(14) Set OUTPUT LEVEL vernier control(s) fully cw.
(15) Measuring receiver will indicate between 99.5 and 100.5%, if not, repeat (11) through (14) above while readjusting A26A1R19 (A26A1R34 for option 002) fig. 3) for best in-tolerance condition.
(16) Set AM switch to OFF.
(17) Set measuring receiver to measure RF power.
(18) For option 002 only, set DBLR OFFSET A26A4R54 fig. 2) to mid-range.
(19) Adjust LVL A26A4R1 (fig. 2) for a +13.2 dBm measuring receiver indication (R).
(20) Adjust OUTPUT LEVEL vernier control(s) for a +13.0 dBm measuring receiver indication. Adjust MET A26A4R12 (fig. \&) for TI meter indication of $+3 \mathrm{~dB}(\mathrm{R})$.
(21) For option 002, proceed to (22) below. For all other models, repeat a above.
(22) Set RANGE MHz switch to 1024-512 and adjust FREQUENCY TUNE control for FREQUENCY MHz display indication of 800 MHz .
(23) Adjust DBLR LVL A26A4R2 (fig. 2) for a +13.0 dBm measuring receiver indication (R).

TB 9-4931-488-35

(24) Set RANGE MHz switch to 64-32 and FREQUENCY TUNE for $50-\mathrm{MHz}$ display indication. Adjust OUTPUT LEVEL vernier control ccw for a $+3-\mathrm{dBm}$ measuring receiver indication.
(25) Set RANGE MHz switch to 1024-512. Adjust DBLR OFFSET A26A4R54 (fig. 2 for a +3 dBm measuring receiver indication (R).
(26) Set RANGE MHz switch to 64-32 and adjust OUTPUT LEVEL vernier control fully cw . If measuring receiver does not indicate +13.2 dBm , repeat (19) above.
(27) Repeat (20) through (26) above until measuring receiver indication at 800 MHz is within $\pm .2 \mathrm{dBm}$ of the 50 MHz indication.
(28) Set RANGE MHz switch to 1024-512 and adjust FREQUENCY TUNE control for FREQUENCY MHz display indication of 700 MHz .
(29) Set OUTPUT LEVEL switch to $\mathbf{+ 2 0} \mathbf{~ d B m}$ and set OUTPUT LEVEL vernier control(s) fully cw. Adjust A26A1C9 fig. 3) for maximum measuring receiver indication (not to exceed +17 dBm) (R).
(30) Position controls as listed in (a) through (e) below.
(a) AM 10X pushbutton pressed.
(b) AM switch to AC.
(c) AM control fully cw.
(d) OUTPUT LEVEL switch to +10 dBm.
(e) FREQUENCY TUNE control for FREQUENCY MHz display indication of 800 MHz .
(31) Adjust OUTPUT LEVEL vernier control(s) for a 0 dB indication on TI meter.
(32) Connect equipment as shown in figure 4.

TI

Figure 4. Doubler gain - adjustment setup

20 CHANGE 2

(34) Set pulse generator controls for a 0.5 ms pulse width with a 1 kHz rate. Adjust pulse generator output controls for TI meter indication of 40% (4 on $0-10$ scale).

NOTE

REDUCE PEAK POWER annunciator should be off in (35) and (36) below.
(35) Adjust oscilloscope controls as necessary to display detected RF output signal. Readjust A26A1C9 (fig. 3) slightly (if required) to limit ringing and eliminate oscillations as indicated on oscilloscope display.
(36) While observing oscilloscope display, slowly vary TI frequency from 512 to 1024 MHz . Readjust A26A1C9 (fig. 3) for a stable square wave indication on oscilloscope display.
(37) Repeat (21) through (36) above until no further adjustment is necessary.
(38) Repeat a above.

12. Output Level and Meter Accuracy (Models Containing Option 004)

a. Performance Check
(1) Connect measuring receiver to RF OUTPUT.
(2) Position controls as listed in (a) through (c) below:
(a) RANGE MHz switch to 512-256.
(b) OUTPUT LEVEL $10 \mathbf{d B}$ switch to $\mathbf{+ 1 6} \mathbf{~ d B m}$.
(c) OUTPUT LEVEL $\mathbf{1 ~ d B}$ switch to $\mathbf{0} \mathbf{~ d B m}$.
(3) Adjust FREQUENCY TUNE control for a 512 MHz indication on FREQUENCY MHz display, and press LOCK ON pushbutton.
(4) Set RF OFF/ON switch to ON

NOTE

In (5) and (6) below, the OUTPUT LEVEL $1 \mathbf{d B}$ switch position must be changed, as necessary, to obtain required TI meter indications.
(5) Adjust OUTPUT LEVEL controls for a TI meter indication of -5 dB . Measuring receiver will indicate between +13.5 and +16.5 dB as listed in table 14; if not, perform \mathbf{b} below.
(6) Repeat technique of (5) above for OUTPUT LEVEL $10 \mathbf{d B m}$ switch settings and meter indications listed in table 14 Measuring receiver will indicate as specified; if not, perform \mathbf{b} below.

Table 14. Output Meter Accuracy (Option 004)

Test Instrument		Measuring receiver indications (dBm)	
OUTPUT LEVEL 10 dbm switch settings	Meter indications (dB)	Min	
+16	-5	+13.5	+16.5
+16	-7	+11.5	+14.5
+16	-10	+8.5	+11.5
+10	0	+8.5	+10.5
+10	-1	+7.5	+10.5
0	0	-1.5	+1.5

(7) Set OUTPUT LEVEL $\mathbf{1 ~ d B}$ switch to $\mathbf{0} \mathbf{d B}$ and adjust OUTPUT LEVEL vernier control for a 0 dBm TI meter indications.
(8) Set measuring receiver to measure tuned level at 512 MHz then establish a 0.0 dB reference on measuring receiver.
(9) Set OUTPUT LEVEL $\mathbf{1 0} \mathbf{d B}$ switch to $\mathbf{- 1 0} \mathbf{~ d B m}$. Measuring receiver will indicate between minimum and maximum limits listed in table 15.
(10) Repeat technique of (9) above for OUTPUT LEVEL switch positions listed in table 15. Receiver system will indicate as specified.

Table 15. Output Level Accuracy (Option 004)

Test Instrument		Measuring receiver indications (dB)	
$\begin{gathered} \hline \text { OUTPUT LEVEL } \\ \mathbf{1 0 ~ d B} \\ \text { switch settings } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { OUTPUT LEVEL } \\ \mathbf{1} \mathbf{~ d B} \\ \text { switch settings } \\ \hline \end{gathered}$		
		Min	Max
-10	0	-12.0	-8.0
-10	-1	-13.0	-9.0
-10	-2	-14.0	-10.0
-10	-3	-15.0	-11.0
-10	-4	-16.0	-12.0
-10	-5	-17.0	-13.0
-10	-6	-18.0	-14.0
-10	-7	-19.0	-15.0
-10	-8	-20.0	-16.0
-10	-9	-21.0	-17.0
-10	-10	-22.0	-18.0
-10	-11	-23.0	-19.0
-10	-12	-24.0	-20.0
-20	0	-22.0	-18.0
-30	0	-32.0	-28.0
-40	0	-42.0	-38.0
-50	0	-52.5	-47.5
-60	0	-62.5	-57.5
-70	0	-72.5	-67.5
-80	0	-82.5	-77.5
-90	0	-92.5	-87.5
-100	0	-102.5	-97.5
-110	0	-112.5	-107.5

(11) Release COUNTER MODE LOCK ON pushbutton and set RF OUTPUT OFF/ON switch to OFF.
b. Adjustments
(1) Position controls as listed in (a) through (f) below.
(a) $\mathbf{F M} \mathbf{k} / \mathbf{M H z}$ pushbutton pressed.
(b) MODULATION FREQUENCY RANGE switch to FIXED FREQ $1 \mathbf{k H z}$.
(c) FM switch to OFF.
(d) PEAK DEVIATION switch to $10 \mathbf{k H z}$.
(e) PEAK DEVIATION vernier control fully ccw.
(f) RANGE MHz switch to 4-2.
(2) Connect multimeter to A2TP2 (fig. 1) and chassis ground. Adjust DET OFFSET A2R15 (fig. 1) for a $0.000 \pm 1-\mathrm{mV}$ dc multimeter indication (R).
(3) Disconnect multimeter from A2TP2 and connect to A4TP1 (fig. 1), Adjust A4R10
(fig. 1) for a $0.000 \pm 1 \mathrm{mV}$ dc multimeter indication (R).
(4) Set FM switch to INT and adjust PEAK DEVIATION vernier control for a 9.766 V dc multimeter indication.
(5) Adjust A4R19 (fig. 1) for a TI meter indication of 10 on 0 to 10 scale (R).
(6) Position controls as listed in (a) through (g) below:
(a) LEVEL VOLTS pushbutton pressed.
(b) AM switch to INT.
(c) AM control fully ccw.
(d) RANGE MHz switch to 256-128.
(e) FREQUENCY TUNE control for FREQUENCY MHz display indication of 190 MHz .
(f) OUTPUT LEVEL vernier control to CAL.
(g) OUTPUT LEVEL switches to $\mathbf{+ 1 0} \mathbf{~ d B m}$.
(7) Disconnect multimeter from TI and connect RF OUTPUT to measuring receiver input and set RF OFF/ON switch to ON.
(8) Set measuring receiver to measure AM with AVG DETECTOR.
(9) Adjust AM control for a measuring receiver indication of approximately 20%. Press measuring receiver RATIO \% key.
(10) Set OUTPUT LEVEL switches to $\mathbf{0} \mathbf{d B m}$. Adjust DET A26A1R19 (fig. B) for a measuring receiver indication of 100% (R).
(11) Set OUTPUT LEVEL switches to $\mathbf{+ 1 0} \mathbf{~ d B m}$. Measuring receiver will indicate between 99.5 and 100.5%; if not, repeat (9) and (10) above while adjusting A26A1R19 fig. 1) for best in-tolerance condition.
(12) Set measuring receiver to measure RF power.
(13) Position controls as listed in (a) through (d) below.
(a) AM switch to OFF.
(b) RANGE MHz switch to 64-32.
(c) FREQUENCY TUNE control for FREQUENCY MHz display indication of 50 MHz .
(d) OUTPUT LEVEL vernier control to CAL.
(14) Set OUTPUT LEVEL $\mathbf{1 0} \mathbf{~ d B}$ switch to $\mathbf{+ 1 6} \mathbf{~ d B m}$ and $\mathbf{1 ~ d B}$ switch to $\mathbf{- 3} \mathbf{~ d B}$.
(15) Adjust LVL A26A4R1 (fig. 2) for $\mathrm{a}+13 \mathrm{dBm}$ indication on measuring receiver
(R).
(16) Adjust MET A26A4R12 (fig. 2) for a -7 dB indication on TI meter (R).
(17) Repeat ((15) and (16) above for best in tolerance condition.

13. Output Level Flatness

a. Performance Check
(1) Position controls as listed in (a) through (e) below.
(a) LEVEL VOLTS pushbutton pressed.
(b) AM switch to OFF.
(c) FM switch to OFF.
(d) RF OFF/ON switch to OFF.
(e) OUTPUT LEVEL switch to $\mathbf{+ 1 0} \mathbf{~ d B m}$.
(2) Connect measuring receiver with power senor to RF OUTPUT.

NOTE
For TI models containing opt 004 proceed to (7) below.
(3) Set RANGE MHz switch to 64-32 and adjust FREQUENCY TUNE control for a 50 MHz indication on FREQUENCY MHz display.
(4) Set RF OFF/ON switch to ON and adjust OUTPUT LEVEL vernier control(s) for a +8.0 dBm indication on measuring receiver.
(5) While observing measuring receiver indication, slowly vary TI frequency from start to stop frequencies listed in table 16. Measuring receiver will indicate between minimum and maximum indications listed in table 16.
(6) Repeat technique of (3) through (5) above for remaining options and settings listed in table 16

Table 16. Output level flatness (models without option 004).

Options	Start frequency (Hz)	Stop frequency (Hz)	Min indication (dB)	Max indication (dB)
Standard model 001, H66	16 M	512 M	+7.5	+8.5
003	16 M	512 M	+6.75	+8.75
002	16 M	64 M	+7.25	+8.25
002	64 M	512 M	+7.0	+9.0
002	512 M	1000 M	+6.5	+9.5
002 with 003	16 M	512 M	+6.0	+9.0
002 with 003	512 M	1000 M	+6.0	+10.0

NOTE

Perform (7) through 10 below for models containing opt 004 only. All other models proceed to (11) below.
(7) Set RANGE MHz switch to 256-128 and adjust FREQUENCY TUNE control for a 190 MHz indication on FREQUENCY MHz display.
(8) Set RF OFF/ON switch to ON and adjust OUTPUT LEVEL $1 \mathbf{d B}$ switch and vernier control for a +8.0 dBm indication on measuring receiver.
(9) While observing measuring receiver indication, slowly vary TI frequency from start to stop frequencies listed in table 17. Measuring receiver will indicate between minimum and maximum indications listed in table 17.
(10) Repeat technique of (7) through (9) above for remaining options and settings listed in table 17

Table 17. Output level flatness models contain option 004

Options	Start frequency (Hz)	Stop frequency (Hz)	Min indication (dB)	Max indication (dB)
004	16 M	108 M	+7.25	+8.75
004	108 M	336 M	+7.5	+8.5
004	336 M	512 M	+7.25	+8.75
004 with 003	16 M	108 M	+6.75	+9.25
004 with 003	108 M	336 M	+7.5	+8.5
004 with 003	336 M	512 M	+6.75	+9.25

(11) Disconnect measuring receiver from TI.
b. Adjustments. No adjustments can be made.

14. Internal Modulation Oscillator Frequency Accuracy, Output Voltage, and Distortion

a. Performance Check
(1) Position controls as listed in (a) through (f) below.
(a) AM switch to INT.
(b) AUDIO OUTPUT LEVEL control fully cw.
(c) AM vernier fully cw.
(d) MODULATION FREQUENCY RANGE switch to FIXED FREQ 1 kHz (1000 Hz for opt 004).
(e) RF OFF/ON switch to ON.
(f) FM switch to OFF.
(2) Connect audio analyzer to AM OUTPUT using 600- Ω termination.
(3) Set audio analyzer and TI to the first functions and settings listed in table 18.
(4) Audio analyzer will indicate within limits specified in table 18
(5) Set audio analyzer and TI to the remaining functions and settings listed in table 18 and repeat (4) above.

Table 18. Internal Modulation Oscillator Frequency Accuracy and Distortion

Test instrument		Audio analyzer				
Modulation frequency range switch settings		Function	Distortion		Frequency	
	vernier		\leq	>	Minimum	Maximum
FIXED FREQ 1 kHz	----------	Level	--	$1(3)^{1}$	----------	---
FIXED FREQ 1 kHz	----------	Frequency	----------	----------	970	1030
FIXED FREQ 1 kHz	----------	Distortion	0.5\%	----------	--	---
FIXED FREQ 400 Hz	----------	Frequency	---------	----------	388	412
FIXED FREQ 400 Hz	----------	Distortion	0.5\%	-----	---------	---------
$\mathrm{X} 1^{2}$	100	Frequency	-----	----------	85	115
X1	100	Distortion	0.5\%	--------	-------	-------
X1	20	Frequency	---------	----------	17	23
X1	20	Distortion	0.5\%	------	---.-.-.	---.-.-.--
X10	100	Frequency	-----	--	850	1150
X10	100	Distortion	0.5\%	----	---	--
X10	200	Frequency	---------	---	1700	2300
X10	200	Distortion	1.0\%	---	---------	----------
X100	200	Frequency	----	----	17,000	23,000
X100	200	Distortion	1.0\%	----------	---------	---------
X100	100	Frequency	---------	----------	8,500	11,500
X100	100	Distortion	1.0\%	----	----------	---------
X1K	100	Frequency	--------	----------	85,000	115,000
X1K	100	Distortion	1.0\%	----------	---------	--------
X1K ${ }^{3}$	200	Frequency	--.-------	----------	170,000	230,000
X3K	200	Frequency	--	-----	510,000	690,000
X3K	20	Frequency	----------	----------	51,000	69,000

${ }^{1}$ Values in parenthesis are for option 001.
${ }^{2}$ Perform remaining test only for TI's containing option 001 \& H66
${ }^{3}$ Replace audio analyzer with frequency counter before this measurement.
b. Adjustments. For TI's containing options 001 \& H66, perform (3) through (19) below. For all other TI's, perform (1) and (2) below.
(1) Connect true rms voltmeter to A11TP3 (fig. 3) and chassis ground. Adjust OSC LEVEL A11R6(fig. 3) for true rms voltmeter indication of $0.840 \pm 0.010 \mathrm{~V}$ ac (R).
(2) Repeat a (3) through (5) above.
(3) Set MODULATION FREQUENCY RANGE switch to X100 and adjust MODULATION FREQUENCY vernier dial fully ccw.
(4) Connect true rms voltmeter INPUT to A11TP4 fig. 3) and chassis ground. Adjust A11R28 (fig. 3) for a 1.4-V ac true rms voltmeter indication. Record true rms voltmeter indication (R).
(5) Connect frequency counter CHANNEL A input to TI AM OUTPUT. Adjust MODULATION FREQUENCY vernier dial fully cw.
(6) Adjust A11C2 and A11C3 (fig. 3) until true rms voltmeter indicates within ± 0.1 V ac of value recorded in (4) above (R).

NOTE
Adjusting A11C2 (fig. 3) ccw decreases voltage while increasing frequency. Adjusting A11C3 fig. 3) ccw increases both voltage and frequency.
(7) Adjust MODULATION FREQUENCY vernier dial to 20. If frequency counter does not indicate $2.00 \pm 0.02 \mathrm{kHz}$, adjust vernier dial for a 2.00 kHz frequency counter indication. Loosen setscrews in vernier control shaft gear and position vernier dial to 20. Tighten setscrews and, if necessary, readjust A11R28(fig. 3) for true rms voltmeter indication between 1.37 and $1.48 \mathrm{~V} \mathrm{ac}$. . Record true rms voltmeter indication.
(8) Adjust MODULATION FREQUENCY vernier dial to 200. If true rms voltmeter does not indicate within $\pm 0.01 \mathrm{~V}$ ac of value recorded in (7) and frequency counter indication is not $20 \pm 0.2 \mathrm{kHz}$, readjust A11C2 (fig. 3) and A11C3 (fig. 3) for desired indications.
(9) Adjust MODULATION FREQUENCY vernier dial to 20. If true rms voltmeter does not indicate within $\pm 0.01 \mathrm{~V}$ ac of value recorded in (7) above and frequency counter indication is not $2.00 \pm 0.02 \mathrm{kHz}$, repeat (7) and (8) above.
(10) Adjust MODULATION FREQUENCY vernier dial to 20. True rms voltmeter will indicate between 1.37 and 1.48 V ac. Record true rms voltmeter indication.
(11) While observing true rms voltmeter indication, slowly vary TI modulation frequency from 2 kHz to 20 kHz . True rms voltmeter will indicate within $\pm 0.03 \mathrm{~V}$ ac of indication recorded in (10) above.
(12) Set MODULATION FREQUENCY RANGE switch to X3K and adjust MODULATION FREQUENCY vernier dial to 200. Adjust A11 (99 (fig. 3) for a $600 \pm 6 \mathrm{kHz}$ frequency counter indication (R).
(13) Position controls as listed in (a) through (c) below.
(a) FM switch to INT.
(b) MODULATION FREQUENCY RANGE switch to X100.
(c) MODULATION FREQUENCY vernier dial to 20.
(14) Connect true rms voltmeter INPUT to A11TP5 (fig. 3) and chassis ground. Adjust A11R35 (fig. 3) for a $0.840 \pm 0.010 \mathrm{~V}$ ac true rms voltmeter indication. Record true rms voltmeter indication (R).
(15) Disconnect true rms voltmeter from A11TP5 (fig. 3) and connect to A11TP3 fig. 3). True rms voltmeter will indicate within $\pm 0.005 \mathrm{~V}$ ac of value recorded in (14) above.
(16) While observing true rms voltmeter, slowly vary modulation frequency from 20 Hz to 100 kHz . True rms voltmeter will indicate within $\pm 0.025 \mathrm{~V}$ ac of value recorded in (14) above.
(17) Repeat technique of (16) for 100 to 600 kHz . True rms voltmeter will indicate within $\pm 0.050 \mathrm{~V}$ ac of value recorded in (14) above.
(18) Set MODULATION FREQUENCY RANGE switch to X3K and adjust MODULATION FREQUENCY vernier dial to 20.
(19) Disconnect frequency counter and true rms voltmeter from TI. Connect true rms voltmeter to AM OUTPUT, using 600Ω termination. Adjust A11R40 (fig. 3) for 3.10 ± 0.03 V ac true rms voltmeter indication (R).
(20) Disconnect equipment setup.
15. AM Sensitivity, Accuracy, and Distortion (All Models Except Those Containing Option 004)
a. Performance Check
(1) Connect equipment as shown in figure 5 .

Figure 5. AM test setup.
(2) Position controls as listed in (a) through (k) below.
(a) COUNTER MODE INT EXT pushbutton pressed.
(b) COUNTER MODE EXPAND X10 and X100 pushbuttons released.
(c) COUNTER MODE LOCK ON pushbutton released.
(d) AM X10\% pushbutton pressed.
(e) AM switch to DC.
(f) AM control fully cw.
(g) FM switch to OFF.
(h) RANGE MHz switch to 512-256.
(i) FREQUENCY TUNE control for a FREQUENCY MHz display indication of 500 MHz .
(j) OUTPUT LEVEL switch to $\mathbf{+ 1 0} \mathbf{~ d B m}$ and vernier control(s) fully cw.
(k) RF OFF/ON switch to ON.
(3) Set measuring receiver to acquire the frequency then to measure AM with peak + detector. Set high-pass filter to 50 Hz and low-pass filter to 15 kHz
(4) Set audio analyzer controls for a $1 \mathrm{kHz} 600 \Omega$ output frequency.

NOTE
In (5) and (8) below, record measuring receiver \% AM display indication using peak + detector and peak - detector. Average the indications and use the average for determining the results.
(5) Adjust audio analyzer output controls for a $1.272-\mathrm{V}$ level. The measuring receiver will indicate between min and max limits listed ir table 19; if not, perform below.
(6) Repeat technique of (5) above for audio analyzer output levels listed in table 19. The measuring receiver will indicate as specified; if not, perform \mathbf{b} below.

Table 19. AM Sensitivity

Audio analyzer Output levels (V ac)	Measuring receiver Indications (\% AM)	
	Min	Max
	85.5	94.5
.9898	66.5	73.5
.707	47.5	52.5
.4242	28.5	31.5
.2828	19.0	21.0
.1414	9.5	10.5

(7) Adjust audio analyzer output controls for a 1.414-V level.
(8) Adjust AM control for 90% modulation ($\mathbf{9}$ on $\mathbf{0 - 1 0}$ scale) as indicated on TI meter. The measuring receiver will indicate between min and max limits listed in table 20,
(9) Repeat technique of (8) for TI meter indications listed in table 20. The modulation analyzer will indicate as specified.

Table 20. AM Accuracy

Test Instrument Meter Indications	Measuring receiver Indications (\% AM)	
	Min	Max
90	83.6	96.5
70	64.7	75.4
50	45.8	54.3
30	26.9	33.2
20	17.4	22.6
10	7.95	12.1

(10) Press LEVEL VOLTS pushbutton and adjust OUTPUT LEVEL vernier control(s) for a +3 dB indication on TI meter.
(11) Adjust AM control for a $50 \% \mathrm{AM}$ indication on measuring receiver. The distortion, as indicated on the audio analyzer will be within limits listed in table 21.
(12) Repeat technique of (10) and (11) above for TI meter dB indications and measuring receiver \% AM indications listed in table 21. The audio analyzer distortion indications will be as specified.

Table 21. AM Distortion

Test instrument meter indications (dB)	Measuring receiver indications $(\% \mathrm{AM})$	Audio analyzer indications $(<\%)$
+3	50	1
+3	90	3
-7	90	3
-7	50	1
-7^{1}	30	10
-7^{1}	90	20

${ }^{1}$ Perform for option 002 only. Set RANGE MHz switch to 1024-512 and adjust FREQUENCY TUNE control for a FREQUENCY MHz display indication of 1024 MHz .
b. Adjustments
(1) Position controls as listed in (a) through (f) below.
(a) $\mathbf{A M}$ switch to $\mathbf{A C}$.
(b) AM control fully cw.
(c) OUTPUT LEVEL vernier control(s) fully cw.
(d) RANGE MHz switch to 64-32.
(e) FREQUENCY TUNE control for FREQUENCY MHz display indication of 50 MHz .
(f) RF OFF/ON switch to ON.
(2) Set Audio analyzer for a $1 \mathrm{kHz} .7072 \mathrm{~V} 600 \Omega$ output signal.
(3) Set measuring receiver to measure peak AM with 50 Hz high-pass and 15 kHz low-pass filters. Adjust \%AM A26A2R19(fig. 2) for a $50.0 \pm 0.1 \%$ measuring receiver indication (R).
(4) Set AM and RF OFF/ON switches to OFF and repeat a above.

16. AM Sensitivity, Accuracy, Distortion, and Demodulated Output (Models Containing Option 004)

a. Performance Check

(1) Connect equipment as shown in figure 5 .
(2) Position controls as listed in (a) through (m) below.
(a) COUNTER MODE INT EXT pushbutton pressed.
(b) COUNTER MODE EXPAND X10 and X100 pushbuttons released.
(c) COUNTER MODE LOCK ON pushbutton released.
(d) AM X10\% pushbutton pressed.
(e) AM switch to DC.
(f) AM control fully cw.
(g) FM switch to OFF.
(h) RANGE MHz switch to 512-256.
(i) FREQUENCY TUNE control for FREQUENCY MHz display indication of

500 MHz .
(j) OUTPUT LEVEL $10 \mathbf{d B}$ switch to $\mathbf{+ 1 0} \mathbf{~ d B m}$.
(k) OUTPUT LEVEL $1 \mathbf{d B}$ switch to $0 \mathbf{d B m}$.
(l) OUTPUT LEVEL vernier control fully cw.
(m) RF OFF/ON switch to ON.
(3) Set measuring receiver to measure AM with peak + detector. Set high-pass filter to 50 Hz and low-pass filter to 15 kHz .
(4) Adjust audio analyzer controls for a $1 \mathrm{kHz}, 600 \Omega$ output frequency.

NOTE

In (5) and (8) below, record measuring receiver \% AM display indication using peak + detector and peak - detector. Average the indications and use the average for determining the results.
(5) Adjust audio analyzer output controls for a $0.827-\mathrm{V}$ level. The measuring receiver will indicate between min and max limits listed in table 22; if not, perform below.
(6) Repeat technique of (5) above for audio analyzer output levels listed in table 22 The measuring receiver will indicate as specified; if not, perform \mathbf{b} below.

Table 22. OPT 004 AM Sensitivity

Audio analyzer output levels $(\mathrm{V} \mathrm{ac})$	Measuring receiver indications $(\% \mathrm{AM})$	
	Min	Max
	85.5	94.5
0.643	66.5	73.5
0.459	47.5	52.5
0.276	28.5	31.5
0.184	19.0	21.0
0.092	9.5	10.5

(7) Adjust audio analyzer OUTPUT controls for a 1.000 V level.
(8) Adjust AM control for 90% modulation ($\mathbf{9}$ on $\mathbf{0 - 1 0}$ scale) as indicated on TI meter. The measuring receiver will indicate between min and max limits listed in table 23.
(9) Repeat technique of (8) above for TI meter indications listed in table 23. The measuring receiver will indicate as specified.

Table 23. OPT 004 AM Accuracy		
Test instrument meter indications	Measuring receiver indications (\% AM)	
	Min	Max
	83.6	96.5
70	64.7	75.4
50	45.8	54.3
30	26.9	33.2
20	17.4	22.6
10	7.95	12.1

(10) Press LEVEL VOLTS pushbutton. Set OUTPUT LEVEL $10 \mathbf{d B}$ switch to $\mathbf{+ 1 0}$ $\mathbf{d B m}$ and $\mathbf{1 d B}$ switch to -7 dB. Adjust OUTPUT LEVEL vernier control for a -7 dB indication on TI meter.
(11) Adjust AM control for a 50\% AM indication on measuring receiver. The distortion, as indicated on the audio analyzer will be within limits listed in table 24
(12) Repeat technique of (10) and (11) above for TI meter dB indications and measuring receiver \% AM indications listed in table 24. The audio analyzer indications will be as specified.

Table 24. OPT 004 AM Distortion

Test instrument meter indications (dB)	Measuring receiver indications $(\% \mathrm{AM})$	Audio analyzer indications $(<\%)$
-7	50	1
-7	90	3

(13) Position controls as listed in (a) through (i) below.
(a) AM X10\% pushbutton pressed.
(b) AM SWITCH to AC.
(c) FM switch to OFF.
(d) RANGE MHz switch to 128-64.
(e) FREQUENCY TUNE control for FREQUENCY MHz display indication of

113 MHz .
(f) AM control fully ccw.
(g) OUTPUT LEVEL $10 \mathbf{d B}$ switch to $0 \mathbf{d B m}$.
(h) OUTPUT LEVEL $1 \mathbf{d B}$ switch to 0.
(i) OUTPUT LEVEL vernier to CAL.
(14) Reduce all outputs to minimum and reconnect equipment as shown in figure 6 . leaving TI RF OUTPUT disconnected.

Figure 6. Demodulated output accuracy - test setup.
(15) Press measuring receiver AUTOMATIC OPERATION and MHz (INPUT FREQ) keys.
(16) Record multimeter dc indication as $\mathrm{V}_{\text {off }}$.
(17) Connect TI RF OUTPUT to measuring receiver sensor module.
(18) Note position of switch A26A8S1 (fig. 2)] and set to AC position. If necessary, turn RF OUTPUT ON.
(19) Adjust audio analyzer controls for a $1 \mathrm{~V}, 120 \mathrm{~Hz}$ output signal.
(20) Adjust AM control for a true RMS voltmeter indication of 1.000 V ac (if necessary use audio analyzer up/down arrows to fine adjust). Press 6.2 and SPCL keys on measuring receiver.

TB 9-4931-488-35

(21) Record multimeter dc indication as V dc.
(22) Set multimeter to measure ac volts and note V ac indication. Multiply this indication by 1.414 and record as V pk .
(23) Compute the TI \% of amplitude modulation (AM), using the following formula. The computed result will be between min and max limits listed in table 25; if not perform b below.

$$
\% \mathrm{AM}=\text { Absolute value of } \frac{\mathrm{Vpk}}{(\mathrm{Vdc})-\left(\mathrm{V}_{\text {off }}\right)} \quad \text { x } \quad 100
$$

Where:

$$
\begin{aligned}
& V_{\text {off }}=\text { value recorded in (16) above } \\
& \mathrm{V}_{\mathrm{dc}}=\text { value recorded in }(21) \text { above } \\
& \mathrm{V}_{\mathrm{pk}}=\text { value recorded in }(22) \text { above }
\end{aligned}
$$

NOTE

If an out-of-tolerance condition is noted in (24) through (27) below, disconnect input to measuring receiver and insure Voff value recorded in (16) above has not changed before performing b below
(24) Repeat technique of (20) through (23) above for multimeter indications listed in table 25. Computed results will be as specified; if not, perform \mathbf{b} below.
(25) Adjust AM control fully ccw. Set switch A26A8S1 (fig. 2)to DC position. Repeat technique of (20) through (24) above for multimeter indications listed in table 26. Computed results will be as specified; if not, perform blow.
(26) Adjust AM control fully ccw. Set RANGE MHz switch to 512-256 and adjust FREQUENCY TUNE control for a FREQUENCY MHz display indication of 333 MHz .
(27) Repeat technique of (15) through (25) above.
(28) Reduce all outputs to minimum.

Table 25. Demodulated Output Accuracy (A26A8Sl Set to AC)

True RMS voltmeter Indications (V Ac)	Computed results $(\%)$	
	Min	Max
1.000	19.6	20.4
1.500	29.4	30.6
2.000	39.2	40.8
2.500	49.0	51.0
3.000	58.8	61.2
3.500	68.6	71.4
4.000	78.4	81.6

TB 9-4931-488-35
Table 26. Demodulated Output Accuracy (A26A8S1 set to DC)

True RMS voltmeter indications $(\mathrm{V} \mathrm{Ac})$	Computed results (\%)	
	Min	Max
0.200	19.6	20.4
0.300	29.4	30.6
0.400	39.2	40.8
0.500	49.0	51.0
0.600	58.8	61.2
0.700	68.6	71.4
0.800	78.4	81.6

b. Adjustments

NOTE

Disconnect all equipment before proceeding.
(1) Position controls as listed in (a) through (i) below.
(a) LEVEL VOLTS pushbutton pressed.
(b) AM switch to OFF.
(c) RANGE MHz switch to 256-128.
(d) FREQUENCY TUNE control for a FREQUENCY MHz display indication of 190 MHz .
(e) AM control to midrange.
(f) OUTPUT LEVEL 10 dB switch to $0 \mathbf{d B m}$.
(g) OUTPUT LEVEL $1 \mathbf{d B}$ switch to $0 \mathbf{d B}$.
(h) OUTPUT LEVEL vernier control to CAL.
(i) RF OFF/ON switch to OFF.
(2) Connect A26A8TP2 fig. 2) to chassis ground. Set A26A8S1 switch(fig. 2) to AC.
(3) Connect multimeter to A26A8TP1 (fig. 2) and chassis ground. Adjust A26A8R3 (fig. 2) for a $0.000 \pm 0.001 \mathrm{~V} \mathrm{dc}$ multimeter indication (R).
(4) Set A26A8S1 switch (fig. 2) to DC. Disconnect multimeter from A26A8TP1 fig. 2) and connect to A26A8TP3 (fig. 2). Adjust A26A8Rl5(fig. 8) for a $0.000 \pm 0.001 \mathrm{~V}$ dc multimeter indication (R).
(5) Disconnect ground from A26A8TP2 (fig. 2). Disconnect multimeter from A26A8TP3 (fig. 2). Set multimeter to measure AC voltage and connect to AM IN A26A2TP1 and GRD (fig. 2).
(6) Connect audio analyzer OUTPUT HI to TI AM input. Adjust audio analyzer controls for a 100 Hz output signal and adjust amplitude controls for a $0 . .52-\mathrm{V}$ ac output level.
(7) Set RF OFF/ON switch to ON and AM switch to DC. Adjust AM control for a $0.3536 \pm 0.0005 \mathrm{~V}$ ac multimeter indication.

TB 9-4931-488-35

(8) Disconnect multimeter from A26A2TP1 (fig. 2). Set multimeter to measure dc voltage and connect to AM OUT A26A2TP3 (fig. 2). Record multimeter indication (should be $2.0 \pm 0.1 \mathrm{~V} \mathrm{dc}$).
(9) Multiply value recorded in (8) above by 0.3536 . Set multimeter to measure ac voltage. Adjust \% AM A26A2R19 (fig. 2) until multimeter indicates within $\pm 0.001 \mathrm{~V}$ ac of value computed above (R).
(10) Disconnect multimeter from A26A2TP3 (fig. 2). Set multimeter to measure dc voltage and connect to DEMOD OUT. Adjust A26A8R10 (fig. 2) for a $1.414 \pm 0.001-\mathrm{V}$ dc multimeter indication (R).
(11) Set A26A8S1 switch (fig. 2) to AC. Adjust A26A8R6 (fig. 2) for a $0.000 \pm 0.001-\mathrm{V}$ dc multimeter indication (R).
(12) Set multimeter to measure ac voltage. Adjust A26A8R8 (fig. Z) for a 2.500 ± 0.001 V ac multimeter indication (R).
(13) Return A26A8S1 switch (fig. 2) to position noted in a (18) above, provided a (18) was performed.
(14) Connect equipment as shown in figure 6 except do not connect the true RMS voltmeter.
(15) Set measuring receiver to measure AM with peak + detector. Set high-pass filter to 50 Hz and low-pass filter to 15 kHz .
(16) Press measuring receiver AUTOMATIC OPERATION and FREQ MHz keys.
(17) Record multimeter dc indication as $\mathrm{V}_{\text {off }}$.
(18) Adjust audio analyzer controls for a $120-\mathrm{Hz}, 600 \Omega, 0.459 \mathrm{~V}$ output.
(19) Connect the measuring receiver sensor module to the TI RF OUT.
(20) Press AM X10\% pushbutton and adjust AM vernier control fully cw.
(21) Adjust the audio analyzer output for a TI meter indication of 50\%. Press 6.2 and SPCL keys on measuring receiver.
(22) Record multimeter dc indication as Vdc.
(23) Calculate the AC component (Vac) using the formula. Round the calculated value to 3 digits and record as Vac.

$$
\text { Vac }=\text { absolute value of }\left(.5^{*}\left(\mathrm{Vdc}-\mathrm{V}_{\text {off }}\right) / 1.414\right)
$$

(24) Set multimeter to measure ac voltage and adjust the audio analyzer output for a multimeter indication as close as possible to the Vac value recorded in (23) above.
(25) Disconnect the multimeter from measuring receiver and connect it to TI DEMOD OUT.
(26) Adjust A26A8R8 (fig. 2) for a multimeter indication of 2.5 ± 0.005 Vrms.
(27) Disconnect the multimeter from the TI and connect to measuring receiver rear panel OUTPUT AM.

TB 9-4931-488-35
(28) Set multimeter to measure dc voltage. Record multimeter dc indication as Vdc1.
(29) Set multimeter to measure ac voltage. Record multimeter dc indication as Vac1.
(30) Calculate the modulation output component (Modout) using the formula.

Modout $=$ absolute value of $($ Vac1*1.414)/(Vdc1-Voff) $) * 100$
(31) Set multimeter to measure dc voltage.
(32) If Modout is not between 49.9 and 50.1 then record the multimeter indication as dcv and repeat (23) through (31) above.
(33) Set A26A8S1 switch (fig. 2) to DC.
(34) Set multimeter to measure dc voltage, adjust the audio analyzer output for a TI meter indication of 50%.
(35) Repeat technique of (22) through (25) above.
(36) Adjust A26A8R10 fig. 2) for a multimeter indication of 0.50000 ± 0.00005 Vrms.
(37) Repeat technique of (27) through (32) above.
(38) Disconnect multimeter from the measuring receiver and connect to the TI DEMOD OUTPUT.
(39) Adjust A26A8R15 fig. 2) for a multimeter indication of $1.414 \pm 0.001 \mathrm{Vdc}$.
(40) Set AM and RF OFF/ON switch to OFF.

17. AM Flatness (Option 004 Only)

a. Performance Check
(1) Press Instrument Preset on measuring receiver, then set to measure AM.
(2) Position TI controls as listed in (a) through (e) below.
(a) AM switch to OFF.
(b) AM control fully ccw.
(c) RANGE MHz switch to 128-64.
(d) FREQUENCY TUNE control for a 113 MHz indication on FREQUENCY

MHz display.
(e) OUTPUT LEVEL switches for a $0-\mathrm{dBm}$ output.
(3) Connect equipment as shown in figure 7.
(4) Adjust audio analyzer amplitude and frequency controls for 1.0 V rms at 90 Hz level.
(5) Set AM switch to $\mathbf{D C}$ and adjust $\mathbf{A M}$ control for TI meter indication of $50 \% \mathrm{AM}$.
(6) Set audio analyzer to measure AC level in dB mode, then press the audio analyzer RATIO key.
(7) Set the audio analyzer output for a 150 Hz output then set to measure level.
(8) The audio analyzer will indicate between limits listed in table 27.
(9) Repeat technique of (7) and (8) above for remaining settings in table 27.

Table 27. AM Flatness 113 MHz Option 004 Only.

Audio analyzer				
Source		Level limits		
Level (V)	Frequency (Hz)	Min	Max	
1	150	-.1	+.1	
1^{1}	10 k	-.1	+.1	
1	11 k	-.1	+.1	

${ }^{1}$ Repeat (3) through (5) above at 9 kHz source frequency before performing this step.
(10) Set audio analyzer RATIO off and source to 90 Hz .
(11) Adjust AM control fully ccw. Set RANGE MHz switch to 512-256 and adjust FREQUENCY TUNE control for FREQUENCY MHz display indication of 332 MHz .
(12) Adjust AM control for TI meter indication of 50% AM.
(13) Set audio analyzer to measure AC level in dB mode, then press the audio analyzer RATIO key.
(14) Set the audio analyzer output for a 150 Hz output then set to measure level.
(15) The audio analyzer will indicate between limits listed in table 28.

Table 28. AM Flatness 332 MHz Option 004 Only.

Audio analyzer				
Source		Lequency (Hz)	Level limits	
Level (V)	Frequin	Max		
1	150	-.1	+.1	

Figure 7. AM flatness - test setup.
b. Adjustments. No adjustments can be made.

18. FM Sensitivity, Accuracy, and Distortion

a. Performance Check

(1) Position controls as listed in (a) through (e) below:
(a) $\mathbf{F M} \mathbf{k} / \mathbf{M H z}$ pushbutton pressed.
(b) PEAK DEVIATION switch to $320 \mathbf{k H z}$.
(c) FM control fully cw.
(d) RANGE MHz switch to 128-64.
(e) $\mathbf{F M}$ switch to $\mathbf{A C}$.
(2) Connect equipment as shown in figure 8.
(3) Set measuring receiver to measure FM. Set the high-pass filter to 50 Hz and low-pass filter to 15 kHz and use peak + detector.
(4) Set audio analyzer for a $1-\mathrm{kHz} 1.414-\mathrm{V}$ ac output level.
(5) Adjust FREQUENCY TUNE control for a FREQUENCY MHz display indication of 64 MHz .
(6) Set PEAK DEVIATION switch to positions listed in table 29. The measuring receiver will indicate as specified; if not, perform \mathbf{b} below.

Figure 8. FM - test setup.
(7) Repeat (5) and (6) above remaining settings in table 29

Table 29. FM Sensitivity

Test Instrument		Measuring receiver indications (kHz)	
FREQUENCY MHz display	PEAK DEVIATION switch settings	Min	Max
64	320	301	339
64	160	150	170
64	80	75.2	84.8
64	40	37.6	42.4
64	20	18.8	21.2
64	10	9.40	10.6
64	5	4.70	5.30
90	320	301	339
90	160	150	170
90	80	75.2	84.8
90	40	37.6	42.4
90	20	18.8	21.2
90	10	9.40	10.6
90	5	4.70	5.30
128	320	301	339
128	160	150	170
128	80	75.2	84.8
128	40	37.6	42.4
128	20	18.8	21.2
128	10	9.40	10.6
128	5	4.70	5.30

(8) Set RANGE MHz switch to 512-256 and adjust FREQUENCY TUNE for TI display indication of 512 MHz .
(9) Set measuring receiver for FM measurement in the automatic operation mode with peak + detector.
(10) Set PEAK DEVIATION switch to settings and adjust audio analyzer output level controls for TI meter indications listed in table 30. If measuring receiver does not indicate as specified, perform \mathbf{b} below.

Table 30. FM Accuracy

Test instrument PEAK DEVIATION switch settings	Test instrument meter indications	Measuring receiver indications (KHz)	
		Min	Max
5	5	4.58	5.43
10	10	9.15	10.8
20	20	18.1	21.9
40	40	36.5	43.5
80	80	72.9	87.1
160	160	144	176
320	320	293	347

[^1]
40 CHANGE 2

(11) Set RANGE MHz switch to 64-32 and adjust FREQUENCY TUNE for FREQUENCY MHz display indication of 32 MHz .
(12) Set PEAK DEVIATION switch to $320 \mathbf{~ k H z}$ and adjust FM control fully cw.
(13) Adjust audio analyzer output level controls for 320 kHz measuring receiver indication. If distortion is not $\leq 3 \%$, perform \mathbf{b} below.
(14) Repeat technique of (11) through (13) above, using settings listed in table 31. The distortion analyzer will indicate as specified; if not, perform \mathbf{b} below.

Table 31. FM Distortion

Test instrument		Measuring receiver indications (kHz)	Audio analyzer distortion indication $(<\%)$
FREQUENCY TUNE and FINE TUNE control settings (MHz)	PEAK DEVIATION switch settings (kHz)		 32
32	320	320	3
45	40	40	1
45	40	40	1
64	320	320	3
64	320	320	3

(15) Set RF OFF/ON switch to OFF.
b. Adjustments

NOTE

Disconnect all equipment before proceeding.
(1) Position controls as listed in (a) through (h) below:
(a) COUNTER MODE pushbuttons as listed in 1. through 3. below:

1. EXPAND X10 and X100 released.
2. LOCK ON released.
3. INT pressed.
(b) $\mathbf{F M} \mathbf{k} / \mathbf{M H z}$ pushbutton pressed.
(c) PEAK DEVIATION switch to $2.56 \mathbf{M H z}$.
(d) FM control fully cw.
(e) RANGE MHz switch to 512-256.
(f) FREQUENCY TUNE control for FREQUENCY MHz display indication of

300 MHz .
(g) FM switch to DC.
(h) RF OFF/ON switch to ON.
(2) Connect multimeter INPUT HI to BUFFER OUTPUT A5TP6 (fig. 3) and INPUT LO chassis ground. Adjust A5R2 3 (fig. 3) for a $0.000 \pm 0.0005 \mathrm{~V}$ dc multimeter indication (R).

TB 9-4931-488-35

(3) Disconnect multimeter INPUT HI from A5TP6 fig. 3) and connect to OUTPUT A5TP2 (fig. 3) Adjust OFFSET A5R8 (fig. 3) for a $0.000 \pm 0.001-\mathrm{V}$ dc multimeter indication (R).
(4) Set FM switch to CAL. Disconnect multimeter INPUT HI from A5TP2 fig. 3 and connect INPUT HI to BUFFER IN A5TP5 (fig. 3). Adjust FM CAL A13R (fig. 3) for a $1.000 \pm 0.001-\mathrm{V}$ dc multimeter indication (R).
(5) Disconnect multimeter INPUT HI from A5TP5 (fig. 3) and connect to VARACTOR ANODE A7TP2 (fig. 3). Adjust A7R19 (fig. 3) for a $-14.70 \pm 0.01-\mathrm{V}$ dc multimeter indication (R).
(6) Connect equipment as shown in figure 8.
(7) Position controls as listed in (a) through (j) below.

NOTE

Some of these TI control settings are repeated from performance check because of their importance to adjustment procedure.
(a) LEVEL VOLTS pushbutton pressed.
(b) AM switch to OFF.
(c) FM switch to INT.
(d) FM control fully ccw.
(e) MODULATION FREQUENCY RANGE switch to FIXED FREQ $1 \mathbf{k H z}$.
(f) PEAK DEVIATION switch to 320 kHz .
(g) RANGE MHz switch to 64-32.
(h) FREQUENCY TUNE control for FREQUENCY MHz display indication of 50 MHz .
(i) OUTPUT LEVEL switch to $\mathbf{+ 1 0} \mathbf{~ d B m}(\mathbf{1 0} \mathbf{~ d B}$ switch to $\mathbf{+ 1 0}$ and $\mathbf{1 ~ d B}$ switch to $\mathbf{0}$ for option 004).
(j) OUTPUT LEVEL vernier control(s) fully cw.
(8) Set measuring receiver to measure peak FM with a 50 Hz high-pass and 15 kHz low-pass filter. Set tuning to track mode (key in 4.1 SPCL).
(9) Adjust FM control for a 320 kHz measuring receiver indication. Set audio analyzer to measure distortion at 1 kHz .
(10) Adjust POS SHAPE A7R12 and NEG SHAPE A7R41 fig. 3) for minimum indication ($<3 \%$) on audio analyzer (R).
(11) Adjust FREQUENCY TUNE control slowly from $\mathbf{3 2}$ to $\mathbf{6 4 ~ M H z}$ while observing audio analyzer. If audio analyzer does not indicate $\leq 3 \%$, repeat (9) and (10) above while adjusting for best intolerance condition across the band.
(12) Position controls as listed in (a) through (d) below.
(a) FM switch to AC.
(b) PEAK DEVIATION switch to $80 \mathbf{k H z}$
(c) $\mathbf{F M}$ control fully cw.
(d) FREQUENCY TUNE control for FREQUENCY MHz display indication of 50 MHz .
(13) Set audio analyzer for a 1 kHz 1.414 V ac output level.
(14) Repeat (8) above.
(15) Adjust MID R3 (fig. 3) for a $80.0 \pm 0.1 \mathrm{kHz}$ measuring receiver indication (R).
(16) Adjust FREQUENCY TUNE control for FREQUENCY MHz display indication of 32 MHz . Adjust LOW R2 fig. 3) for a $80.0 \pm 0.1-\mathrm{kHz}$ measuring receiver indication (R).
(17) Adjust FREQUENCY TUNE control for FREQUENCY MHz display indication of 64 MHz . Adjust HIGH R4 (fig. 3) for a $80.0 \pm 0.1 \mathrm{kHz}$ measuring receiver indication (R).
(18) Adjust FREQUENCY TUNE control for FREQUENCY MHz display indication of 50 MHz and repeat (15) through (17) above until measuring receiver indication is 80.0 $\pm 0.2 \mathrm{kHz}$ at 32,50 , and 64 MHz .
(19) Set FM and RF OFF/ON switches to OFF and repeat a above.

19. Power Supply

a. Performance Check

(1) Remove top cover from TI.
(2) Check to see that the five LED's on supply boards(fig. 2) are on.
(3) Connect multimeter to test points listed in table 32 and chassis ground. If multimeter does not indicate within limits specified in table 32, perform adjustments listed.

Table 32. Power Supply Check

| Test
 instrument
 test point
 locations
 (fig. 2) | Min | Adjustments
 locations
 (fig. 2) (R) | Multimeter
 indications |
| :---: | :---: | :---: | :---: | :---: |
| | Max voltage limits | | (V Dc) |

[^2]
20. Final Procedure

a. Deenergize and disconnect all equipment.
b. Annotate and affix DA label/form in accordance with TB 750-25.

By Order of the Secretary of the Army:

Official

PETER J. SCHOOMAKER General, United States Army

Acting Chief of Staff

Dstribution:
To be distributed in accordance with IDN 342064, requirements for calibration procedure TB 9-4931-488-35.

Instructions for Submitting an Electronic 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: $1,3,4,5,6,7,8,9,10,13,15,16,17$, and 27.

From: "Whomever" whomever@redstone.army.mil
To: <2028@redstone.army.mil
Subject: DA Form 2028

1. From: Joe Smith
2. Unit: home
3. Address: 4300 Park
4. City: Hometown
5. St: MO
6. Zip: 77777
7. Date Sent: 19-OCT -93
8. Pub no: 55-2840-229-23
9. Pub Title: TM
10. Publication Date: 04-JUL-85
11. Change Number: 7
12. Submitter Rank: MSG
13. Submitter FName: Joe
14. Submitter MName: T
15. Submitter LName: Smith
16. Submitter Phone: 123-123-1234
17. Problem: 1
18. Page: 2
19. Paragraph: 3
20. Line: 4
21. NSN: 5
22. Reference: 6
23. Figure: 7
24. Table: 8
25. Item: 9
26. Total: 123
27. Text

This is the text for the problem below line 27.

PIN: 063108-000

[^0]: *This technical bulletin supersedes TB 9-4931-488-35 dated 11 October 1989.

[^1]: ${ }^{1}$ Use scale reference that is lit up under SCALE to left of TI meter.

[^2]: ${ }^{1}$ For some models, this may be TP5.
 ${ }^{2}$ For some models, this may be A18R2.

